Tools for Urban Planning

3D Model District Grünbühl Ludwigsburg

Prof. Dr. habil. Ursula Eicker
Our research institute: zafh.net Stuttgart

- **Renewable energy techniques**
 (photovoltaics, solar thermal, geothermal, biomass)

- **Development of technologies** for solar heating and cooling systems

- **Development of dynamic simulation tools and models** of energy systems and buildings

- **Monitoring techniques, communication and optimised system controls**

- **Development of integrated processes for energy efficient buildings and districts with 3D Models** (CityGML, Sketch Up)

→ a team of 25 researchers

→ close collaboration with Geoinformatics, Architecture and Urban Planning departments of the Hochschule für Technik
A rapid transition of urban areas towards energy efficiency and the adaption to challenges posed by climate change are highly required…

• 3D city modeling can play an essential role for energy planners and municipal managers, supporting them with:
 - energy diagnosis of the present situation
 - coordination of strategies to decrease building energy demand
 - …and increase sustainable energy supply concepts
 - development of strategies for sustainable transport

• A common, flexible and open city modeling standard is needed to:
 - deal with different levels of details and data availabilities/qualities
 - store and exchange numerous and miscellaneous urban data on a unique support
 - provide a visualization of results
Overview city simulation tools

URBAN MODELS
CITYSIM: Microsimulation urban model based on Suntool (2002), includes CitySim scene creation based on XML data exchange, simplified radiosity model for irradiance and daylighting calculations, simplified capacity-resistor multizone building model, occupant behaviour models, simple energy conversion models
MODELICA with libraries as a general non causal simulation environment

BUILDING SIMULATION MODELS
ENERGYPLUS: building simulation tool, can include external scenes (building obstructions), TRNSYS, ESP-r, IDA-ICE (mit IFC Import)

DECISION SUPPORT SYSTEMS
UrbanSim (Lawrence Berkeley Laboratory) supporting planning and analysis of urban development

GIS BASED URBAN SIMULATION
mainly visualisation tools
CityGML

- Standardized (OGC) open data model for virtual 3D Citymodels
- Based on ISO 19139 Standard GML (XML based), extended for urban structures
- Spatio-semantic Model, linking geometry, topological relationships, semantic data and design property (for visualization)

Strengths

- open standard, regularly updated
- already wide-used (at least in Germany)
- XML based and extendable
- many possibilities of spatial analysis
- modeling with 4 possible Level of Details (LOD)
Level of Details in CityGML

LoD 0: Land model with textures

LoD 1: Citymodel, building blocks without roof structure

LoD 2: Citymodel with roof structure and texture

LoD 3: Detailed Architecture model (Outside)

LoD 4: Detailed Architecture model (Outside and Inside)
Data collection

Development of an integrated process of district heat demand calculation

1. Generation/Import and quality control of a **3D Citymodel** (CityGML LoD1/LoD2)

2. Automatized calculation of **building envelop thermal characteristics**
 - use of national **building libraries** (building types/ages)
 - updated with additional information (precise Uvalues, refurbishment etc.)

3. Geometrical Analysis of 3D Model, pre-processing with building parameters

4. Heat demand calculation for each building through the **monthly energy balance** method (EN ISO 13790)

![Diagram showing the process of district heat demand calculation]

- **Data collection**
 - Cadaster, Laser scanning, Noise mapping
 - Building attributes (types, ages)
 - Actual thermal state

- **3D Model generation/import**

- **Analysed geometry**

- **Thermal characteristics**

- **Building Typology Libraries**

- **Heat demand calculation**

- **Results analysis**

- **2D/3D Visualization**

- **Weather data**
Quality control and analysis of 3D City model

• Quality Control
 ➢ Control closed volume, surface connections

• Volume Calculation
 ➢ tetraeders decomposition

• Extraction adjacent walls
Thermal Data processing

Building attributes

Gebäudetyp

Baualter

Statische U-werte
Je Gebäudeklasse (1)

<table>
<thead>
<tr>
<th>Gebäudeklasse</th>
<th>EHH</th>
<th>RH</th>
<th>MH</th>
<th>SHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ursprüngliche U-werte

- U-wand
- U-dach/OGdecke
- U-kellerdecke
- U-fenster
- U-wärmebrücke

Sanierungsmaßnahmen

Isolierungszusatz (ε_{iso}, λ_{iso}, Ebene)

Fenster Austausch

Wärmebrücke Handlung

$R_L = \frac{\varepsilon_{iso}}{\lambda_{iso}}$

U-fenster

U-wärmebrücke

Aktualisierte U-werte

- U-wand (2)
- U-dach/OGdecke (2)
- U-kellerdecke (2)
- U-fenster
- U-wärmebrücke

Updated building state (photo, observation in-situ)

Building library (IWU etc.)
The **heated volume, wall, cellar wall and window areas** must be corrected between the 3D Model and the thermal building model, particularly if:

- **Cellar type** = heated/non-heated
- **Attic storey type** = non-heated
- **Usage ALKIS** = commercial-residential building
Results Visualization

2D GIS – Heat demand in Grünbühl

3D Visualisation – Heat demand in Grünbühl

© European Institute for Energy Research, 3D-Print of Stuttgart (1km x 1 km)
Three case studies of District Heat Demand Calculation, with different level of details and input data qualities

• District Grünbühl, in Ludwigsburg
• District Rintheim, in Karlsruhe
• District Neuaubing, in Munich
Case Study 1: Post-war district

Ludwigsburg – Grünbühl

- Living area: 77,000 m²
- Energy supply: mainly Gas boilers
- 3D model: LoD1 (roof area from laser scanning)
- Uvalues deduced from building age and types Information, updated with outside observations
Case study 1: Ludwigsburg – Grünbühl

Data collection

• For apartment dwellings → building data collected from owner companies
• For private buildings → on-site observation (survey)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEB_ID</td>
<td></td>
</tr>
<tr>
<td>STRASSE_NAME</td>
<td></td>
</tr>
<tr>
<td>STRASSE_NR</td>
<td></td>
</tr>
<tr>
<td>NUTZ_ALK</td>
<td>nach ALK Definition (Whs; Wghs; Schule …)</td>
</tr>
<tr>
<td>WOHNTYP</td>
<td>nach IWU Definition (EFH; RH; MFH; GMH…)</td>
</tr>
<tr>
<td>GEBALTKLASSE</td>
<td>nach IWU Definition (A; B;…; J)</td>
</tr>
<tr>
<td>VOLLGESCHOSSE</td>
<td>Integer</td>
</tr>
<tr>
<td>DACHGESCHOSSE_TYP</td>
<td>Kein / Unbeheizter/ Beheizter Dachgeschoss</td>
</tr>
<tr>
<td>KELLER_TYP</td>
<td>Keine / Unbeheizte / Beheizte Keller</td>
</tr>
<tr>
<td>SANIER</td>
<td></td>
</tr>
<tr>
<td>FASSADE_ID</td>
<td></td>
</tr>
<tr>
<td>WRICHTUNG</td>
<td>Azimuth</td>
</tr>
<tr>
<td>WDAEMD</td>
<td>Dicke der Isolierstoff</td>
</tr>
<tr>
<td>WDAEMLAMBDA</td>
<td>Wärmeleitfähigkeit der Isolierstoff</td>
</tr>
<tr>
<td>WUWERT</td>
<td>Wand U-Werte wenn bekannt</td>
</tr>
<tr>
<td>FANTEIL</td>
<td>Fenster Anteil (%)</td>
</tr>
<tr>
<td>FTYP</td>
<td>(1 – 5)</td>
</tr>
<tr>
<td>FUWERT</td>
<td>Fenster U-Wert wenn bekannt</td>
</tr>
<tr>
<td>FSCHATTEN</td>
<td>Fenster Schatten Faktor</td>
</tr>
<tr>
<td>WSCHAD</td>
<td>Wand Schädigung (1 - 5)</td>
</tr>
</tbody>
</table>
Case study 1: Ludwigsburg – Grünbühl

Outside facade state of post-war buildings
Integration of a „facade damage index“ (0 - 5) in the 3D Model dataset

• Used for the infiltration rate assessment

• Potential use to define refurbishment priorities in a refurbishment scenario
Case study 1: Ludwigsburg – Grünbühl

Building and refurbishment year

• 1/3 post-war buildings

• Since 1990, 1% of the district living area is refurbished yearly
Heat demand calculation

• Average: 106 kWh/m²/yr

 ➢ from 30 for newly refurbished buildings to 216 kWh/m²/yr for old leaky buildings
Comparison with gas consumptions* (average over the last 6 years)

- Global Deviation: 18%

* Assumptions: Domestic hot water: 20 kWh/m²; Gas boiler efficiency: 85%
Case Study 2: partly refurbished Apartment dwellings
Karlsruhe – Rintheim

• Living area: 65,000 m² (36 Buildings – 1/3 refurbished)
• Energy supply: Gas boilers
• 3D model: Karlsruhe LoD2 model (roof area from laser scanning)
• Precise information on Uvalues (building classification in 6 types)
Classification of the building stock in 6 Building Types with same thermal characteristics

- Type 1 and 2: original state, not refurbished
- Type 3: partly refurbished (facade in 1975, roof in 2003)
- Type 4 to 6.2: full-refurbishment of buildings between 1998 and 2008

<table>
<thead>
<tr>
<th>Building Class</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6.1</th>
<th>Type 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type</td>
<td>Multi family</td>
<td>High rise</td>
<td>Multi family</td>
<td>Multi family</td>
<td>Multi family</td>
<td>High rise</td>
<td>Multi family</td>
</tr>
<tr>
<td>U-value wall</td>
<td>1.40</td>
<td>0.80</td>
<td>0.40</td>
<td>0.30</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>U-value roof / top level</td>
<td>1.17</td>
<td>0.35</td>
<td>0.20</td>
<td>0.35</td>
<td>0.35</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>U-value basement ceiling</td>
<td>1.65</td>
<td>0.71</td>
<td>0.85</td>
<td>0.47</td>
<td>0.47</td>
<td>0.25</td>
<td>0.38</td>
</tr>
<tr>
<td>U-value window</td>
<td>3.20</td>
<td>2.70</td>
<td>2.70</td>
<td>1.70</td>
<td>1.40</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>g-value window</td>
<td>0.80</td>
<td>0.76</td>
<td>0.76</td>
<td>0.63</td>
<td>0.62</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>ΔU thermal bridge</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>air exchange rate</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Uvalues from Büro IGK-Kaiserslautern
Individual building comparison – Simulated and measured heat demand*

- Average gas consumption over 3 years
- Total district deviation: 6.7%
- Standard deviation: 18%

* Assumptions: domestic hot water: 20 kWh/m²/yr; Gas boiler efficiency: 88%
Case study 2: Karlsruhe – Rintheim

Building type comparison – Simulated and measured heat demand*

- Building types II - V match well (deviation ~5%)
- Low-energy building type VI → -18% under-estimated heat demand
- Non-refurbished building type I → 32% over-estimated heat demand

* Assumptions: domestic hot water: 20 kWh/m²/yr; Gas boiler efficiency: 88%
Case Study 3: 80s Residential complex

München – Neuaubing

• Living area: 28,000 m² (335 apartments)
• Energy supply: central gas heating
• 3D model: LoD2 (generated manually with original plans)
• Uvalue from original plans, updated with refurbishment measures
Case study 3: München – Neuaubing

Residential complex partly insulated

- Original Roof insulation
- Outwalls originally not insulated
- … but after 1990 partly and variably insulated
Heat demand calculation

- Because of different wall insulations, solar gains (orientation of windows) and relative positions, the heat demands vary between 70 and 96 kWh/m²/yr for the different buildings blocks (average: 78 kWh/m²/yr)

Comparison with the central gas consumption* (average over the last 3 years)

- Heat demand from gas consumption: 74,9 kWh/m²/yr → deviation: 4%

* Assumptions: Domestic hot water: 20 kWh/m²/yr; Gas boiler efficiency: 85%; heating network losses: 5%
Potential causes of the deviation

• Geometry
 ➢ the heated volume is often over-estimated

• Set-point temperature and heating operation plans
 ➢ day and night heating plans are the same for all in the simulation (night: 7h/day)
 ➢ individual room heating, dependent on the usages (sleeping room vs. living room), is not
 taken into account in the simulation (instead: monozone building model)

• Air change
 ➢ the air change in naturally ventilated buildings (especially old buildings) in winter seldom
 reaches the assumptions, corresponding to hygienic requirements (0,6 AC/H)

• Missing information concerning heat systems
 ➢ influences the comparison with gas consumption data

• Missing information on recent refurbishment operations

• User behaviour
 ➢ Individual consumer behaviour regarding energy usage is always difficult to simulate
Use of 3D City Model for urban planning

- Refurbishment scenario and energy saving potentials
- Definition of refurbishment priorities, temporal planning of the urban renewal
- Calculation of refurbishment investment/global energy costs
Outlook and conclusions

- Very large 3D data based on CityGML standard available
- Many models available for urban radiation, occupant behaviour (CitySim) or renewable energy systems (INSEL, TRNSYS)
- General modeling languages availables, where libraries are rapidly developing (Modelica)
- Interfacing between simulation tools and 3D data (BIM or CityGml) still a challenge
- 3D city simulation based on CityGML allows good possibilities for urban heat demand simulation, planning of district heating system extension, decentralised renewables production, in coordination with heat demand decrease strategies
Thank you for your attention!